SÉRIE AHX

PLAQUETTES RÉVERSIBLES HEPTAGONALES PLAQUETTES ÉCONOMIQUES À 14 ARÊTES DE COUPE

SÉRIE AHX

FRAISES À SURFACER À PLAQUETTES MULTI-ARÊTES

AHX440S

IDÉAL POUR L'ÉBAUCHE ET LA FINITION AVEC DES MACHINES DE FAIBLE PUISSANCE

- Gamme disponible Ø 40 160 mm (3 16 dents)
- Plaquette réversible, 14 arêtes de coupe
- Profondeur de coupe max. APMX 3 mm
- Arrosage interne (Ø 40 125 mm)
- Rayon de pointe de 0.8 mm et 3.2 mm

AHX475S

FRAISE À GRANDE AVANCE - PRODUCTIVITÉ ET FIABILITÉ

- Gamme disponible Ø 50 160 mm (4 12 dents)
- Plaquette réversible, 14 arêtes de coupe
- Profondeur de coupe max. APMX 1.6 mm
- Arrosage interne (Ø 50 160 mm)
- Avance jusqu'à 2 mm/dent

AHX640S

IDÉALE POUR L'ÉBAUCHE GÉNÉRALE SUR DES MACHINES DE MOYENNE ET GRANDE PUISSANCE

- Gamme disponible Ø 63 200 mm (4 12 dents)
- Plaquette réversible, 14 arêtes de coupe
- Profondeur de coupe max. APMX 6 mm
- Arrosage interne (Ø 63 125 mm)

AHX640W

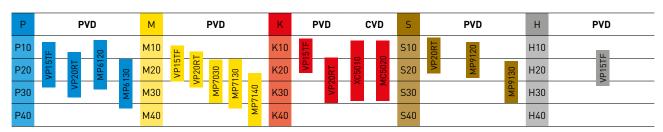
IDÉALE POUR L'ÉBAUCHE GÉNÉRALE DE LA FONTE SUR DES MACHINES DE MOYENNE ET GRANDE PUISSANCE

- Gamme disponible Ø 80 315 mm (8 44 dents)
- Plaquette réversible, 14 arêtes de coupe
- Profondeur de coupe max. APMX 6 mm
- Système de serrage à coin anti-éjection (AFI) de grande raideur

PLAQUETTE RÉVERSIBLE À 14 ARÊTES DE COUPE POUR L'USINAGE DE L'ACIER, DE L'ACIER INOXYDABLE ET DE LA FONTE

PLAQUETTE HEPTAGONALE RÉVERSIBLE ÉCONOMIQUE

La géométrie de coupe positive assure des efforts de coupe réduits pour un débit de copeaux augmenté.


PLAQUETTE ROBUSTE

La grande épaisseur de la plaquette assure la résistance de l'arête et la fiabilité de l'usinage.

NUMÉROTATION DES ARÊTES

Pour une reconnaissance facile des arêtes utilisées et non utilisées, pour simplifier la manipulation de l'outil.

NUANCES DE CARBURE POUR UNE LARGE GAMME DE MATIÈRES

MP6120

Pour l'usinage polyvalent de l'acier

MP6130

Pour l'usinage interrompu de l'acier

MP7030

Pour l'usinage polyvalent de l'acier inoxydable

MP7130

Pour l'usinage polyvalent de l'acier inoxydable

MP7140

Pour le surfaçage interrompu de l'acier inoxydable

MC5020

Pour le surfaçage général de la fonte

MP9120

Pour le surfaçage général des réfractaires et du titane

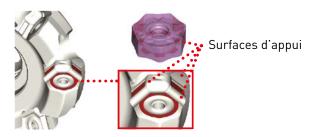
MP9130

Pour l'usinage polyvalent des réfractaires et du titane

XC5010

Nuance céramique revêtue pour une grande durée de vie à haute vitesse de coupe

AHX440S/AHX475S/AHX640S


PERFORMANCE, ROBUSTESSE ET FIABILITÉ EN SURFAÇAGE D'ACIER, INOX ET FONTE

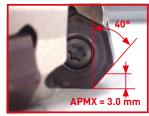
CONCEPTION SPÉCIFIQUE POUR UN MAXIMUM DE FIABILITÉ

Le logement de plaquette conique avec une fonction anti-éjection (AFI) assurent un positionnement stable de la plaquette. Le corps de fraise est en retrait par rappoprt à la plaquette pour éviter l'endommagement en cas d'écaillage.

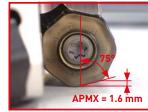
La grande épaisseur de plaquette évite l'utilisation d'une assise carbure.

ARROSAGE INTERNE

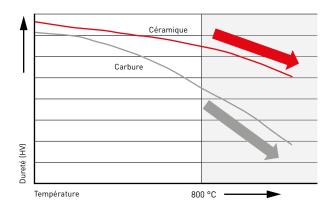
L'arrosage interne évite le recyclage des copeaux et empêche le collage.



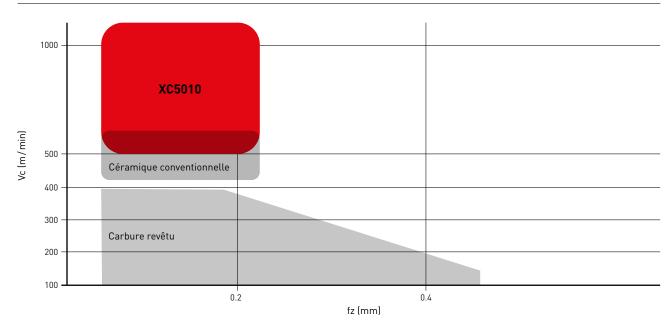
Fraise grande avance


Le fraisage grande avance est possible avec le plaquettes de l'AHX475S en utilisant une plaquette de rayon RE = 3.2 mm avec un angle d'attaque de 75° (KAPR 15°). La profondeur de passe maximale (APMX) est de 1.6 mm.

AHX440S (Brise-copeaux L)

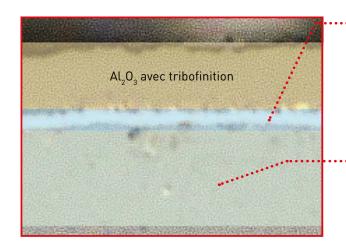


AHX475S


LA GRANDE DURETÉ À CHAUD DE LA CÉRAMIQUE PERMET UN USINAGE À TRÈS HAUTE VITESSE

DURETÉS À CHAUD DU CARBURE ET DE LA CÉRAMIQUE

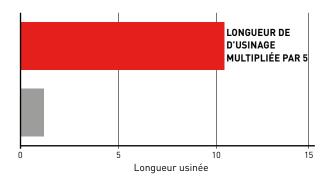
La dureté de plaquettes en carbure est fortement dégradée lorsque leur température dépasse 800 °C. À l'opposé, la dureté de plaquettes en céramique ne baisse que très peu à haute température. Elles peuvent donc être utilisées à très haute vitesse et grande profondeur de passe sans dégradation de leur performance.


LA COMBINAISON DU BRISE-COPEAUX SPÉCIFIQUE ET DE LA CÉRAMIQUE REVÊTUE PERMET D'OBTENIR UN USINAGE FIABLE À DES VITESSES DE COUPE DE 1000 M/MIN.

LA GRANDE DURETÉ À CHAUD DE LA CÉRAMIQUE PERMET UN USINAGE À TRÈS HAUTE VITESSE

LE REVÊTEMENT AL,O, LISSE PROTÈGE LA PLAQUETTE DE LA CHALEUR

Le revêtement Al₂O₃, qui isole le substrat de la plaquette de la chaleur et la surface lisse obtenue par tribofinition évite l'endommagement de la plaquette par collage et fissuration thermique.


COUCHE D'ACCROCHE DE NOUVELLE TECHNOLOGIE

La couche d'accroche spécifiquement développée par Mitsubishi Materials renforce l'adhésion du revêtement au substrat céramique.

SUBSTRAT CÉRAMIQUE EN NITRURE DE SILICIUM

Le substrat céramique en nitrure de silicium à haute ténacité permet un fraisage de fonte ductile à très haute vitesse sans risque d'écaillage et de fissuration par les chocs thermiques.

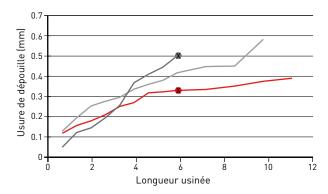
Matière de la pièce	FGS600-3
Outil	AHX640S
DC (mm)	80
Vc (m/min)	1000
fz (mm)	0.1
ap (mm)	2.0
ae (mm)	50
Arrosage	Usinage à sec

APRÈS 1.2 M D'USINAGE

XC5010

Céramique non revêtue

Vidéo d'usinage à Vc = 1200 m/min



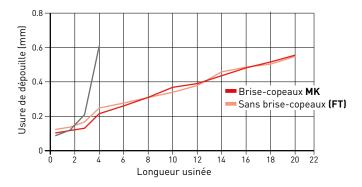
PERFORMANCES D'USINAGE

USURE EN USINAGE DE FGS700-2, Vc = 1000 M/MIN

La résistance à l'usure en ébauche à grande vitesse surpasse largement celle des nuances carbure.

Matière de la pièce	FGS700-2					
Outil	AHX640S					
DC (mm)	80					
Vc (m/min)	1000					
fz (mm)	0.1					
ap (mm)	2.0					
ae (mm)	40					
Arrosage	Usinage à sec Plaquette unique					

APRÈS 6 M D'USINAGE

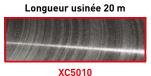

XC5010

Conventionnel A

ÉTAT DE SURFACE EN USINAGE DE FGS700-2, Vc = 1000 M/MIN

Un bon état de surface est maintenu même après une longueur usinée de 20 m.

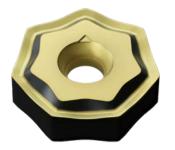
Matière de la pièce	FGS700-2
Outil	AHX640S
DC (mm)	125
Vc (m/min)	1000
fz (mm)	0.1
ap (mm)	2.0
ae (mm)	100
Arrosage	Usinage à sec


Longueur usinée 4 m

Brise-copeaux MK

Sans brise-copeaux (FT)

Brise-copeaux **MK**



Sans brise-copeaux (FT)

La nuance carbure conventionnelle s'écaille après une longueur usinée de 4 m.

BRISE-COPEAUX

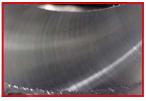
BRISE-COPEAUX MK - PLAQUETTE POLYVALENTE

Par rapport à des plaquettes sans brise-copeaux, les efforts de coupe sont réduits par l'utilisation du brise-copeaux MK. Cela réduit la puissance de broche consommée, permettant une augmentation de la vitesse de coupe.

SANS BRISE-COPEAUX (FT) - PLAQUETTE RENFORCÉE

La résistance élevée des arêtes évite l'écaillage et assure la fiabilité de l'outil sur l'ensemble de la durée de vie.

La jauge d'outil est différente entre les plaquettes MK et FT.


ÉTAT DE SURFACE EN USINAGE DE FGS600-3

Même à de très hautes vitesses de coupe, un bon état de surface est assuré.

Matière de la pièce	FGS600-3
Outil	AHX640S
DC (mm)	63
fz (mm)	0.1
ap (mm)	1.0
ae (mm)	32
Arrosage	Usinage à sec

Vc = 1000 m/min

XC5010 Brise-copeaux **MK**

Vc = 250 m/min

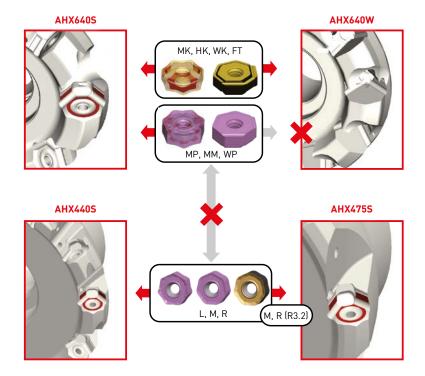
Nuance carbure revêtu conventionnelle

SURFAÇAGE D'ACIER

TABLEAU DE SÉLECTION (NOMBRE DE DENTS ET AVANCES)

				AHX440S			AHX475S		AHX640S			
DC	Туре	ZEFF	С	oupe Génér	ale	Usina	ge à grande	avance	Coupe Générale			
			Stock	fr	APMX	Stock	fr	APMX	Stock	fr	APMX	
40	Pas réduit	3	•	0.6 – 1.2	3							
40	Pas extra fin	4	•	0.8 – 1.6	3							
	Pas réduit	4	•	0.8 – 1.6	3	•	2.4-4.0	1.6				
50	Pas extra fin	5	•	1.0 – 2.0	3	•	3.0-5.0	1.6				
	Pas super extra fin	6	•	1.2-2.4	3							
	Pas normal	4							•	0.8 – 1.6	6	
	Pas réduit	5	•	1.0 – 2.0	3	•	3.0-5.0	1.6	•	1.0 - 2.0	6	
63	Pas extra fin	6	•	1.2 – 2.4	3	•	3.6-6.0	1.6				
	Pas super extra fin	8	•	1.6-3.2	3							
	Pas normal	4							•	0.8 – 1.6	6	
	Pas réduit	6	•	1.2 - 2.4	3	•	3.6-6.0	1.6	•	1.2-2.4	6	
80	Pas extra fin	8	•	1.6-3.2	3	•	4.8-8.0	1.6				
	Pas super extra fin	10	•	2.0 - 4.0	3							
	Pas normal	5							•	1.0 – 2.0	6	
	Pas réduit	7	•	1.4 – 2.8	3	•	4.2-7.0	1.6	•	1.4 – 2.8	6	
100	Pas extra fin	9				•	5.4-9.0	1.6				
	Pas extra fin	10	•	2.0 - 4.0	3							
	Pas super extra fin	12	•	2.4 – 4.8	3							
	Pas normal	6							•	1.2-2.4	6	
	Pas réduit	8	•	1.6-3.2	3	•	4.8-8.0	1.6	•	1.6-3.2	6	
125	Pas extra fin	10				•	6.0 – 10.0	1.6				
	Pas extra fin	12	•	2.4 – 4.8	3							
	Pas super extra fin	14	•	2.8 - 5.6	3							
	Pas normal	7	-						•	1.4 – 2.8	6	
	Pas réduit	10	•	2.0 - 4.0	3	•	6.0 – 10.0	1.6	•	2.0-4.0	6	
160	Pas extra fin	12				•	7.2 – 12.0	1.6				
	Pas extra fin	14	•	2.8 – 5.6	3							
	Pas super extra fin	16	•	3.2-6.4	3							
000	Pas normal	8							•	1.6-3.2	6	
200	Pas réduit	12							•	2.4 – 4.8	6	

fr : Avance par tour (AHX475S : l'avance par dent fz) est fonction de l'engagement ae. Cf tableau page 21 pour plus de détails.) APMX : Profondeur de passe maximale (AHX440S : la profondeur de passe maximale dépend du brise-copeaux utilisé.) Les profondeurs de passe et avances sont identiques pour les aciers au carbone et alliés.


SURFAÇAGE D'ACIER

SÉLECTION DES PLAQUETTES

COMPATIBILITÉ DES PLAQUETTES DE LA SÉRIE AHX

La plaquette pour l'AHX440 avec un rayon RE = 3.2 mm est également utilisée sur l'AHX475S. Toutes les plaquettes de la série AHX640 peuvent être montées sur l'AHX640S (veuillez noter la fifférence de jauge d'outil).

Les fraises AHX640W peuvent uniquement recevoir des plaquettes fonte (brise-copeaux MK, HK, WK et FT).

SURFAÇAGE D'ACIER

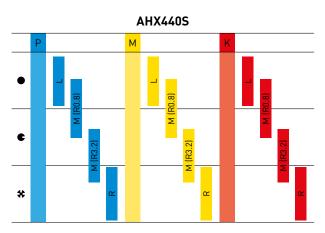
SYSTÈME DE BRISE-COPEAUX

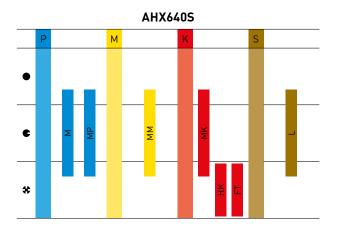
Brise-copeaux L

- Grande acuité d'arête
- Réduction de la prise de puissance

Brise-copeaux M

- 1ère préconisation
- Plaquette polyvalente





Brise-copeaux R

- Grande résistance à l'écaillage
- Arête renforcée

Conditions de stabilité :

PLAQUETTES DE PLANAGE POUR L'AHX640S

Selon le nombre de plaquettes et les conditions de coupe, l'utilisation de plaquettes de planage peut améliorer l'état de surface.

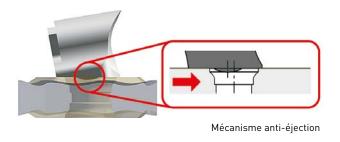
WP + plaquette de coupe MP 2 arêtes à droite, 2 arêtes à gauche.

WK + plaquette de coupe MK ou HK
2 arêtes à droite,
2 arêtes à gauche

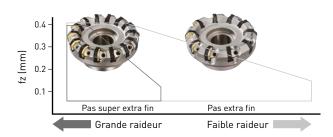
AHX640W

FRAISE À SURFACER POUR L'USINAGE À HAUTE PERFORMANCE DE LA FONTE

PLAQUETTES DE GRANDE RAIDEUR ADAPTÉES À L'USINAGE À FORTE AVANCE

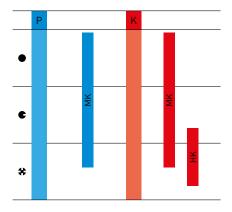


Arête de coupe inclinée pour un grand angle de coupe


SYSTÈME DE SERRAGE INNOVANT

Un nouveau type de coin-bride permet d'augmenter le nombre de dents . La conception innovante est basée sur un tenon qui se loge dans le trou de la plaquette et sert de mécanisme anti-éjection (AFI).

2 DIFFÉRENTS PAS POUR DIFFÉRENTES APPLICATIONS


Les pas extra fin et super extra fin permettent d'optimiser les outils par rapport aux conditions d'usinage. Des corps à gauche pour une utilisation sur machines spéciales sont disponibles en standard. Les plaquettes peuvent être utilisées sur des corps à droite ou à gauche.

AHX640W

FRAISE À SURFACER POUR L'USINAGE À HAUTE PERFORMANCE DE LA FONTE

CHOIX DU BRISE-COPEAUX

Plaquette à usage général **MK**

- Plaquette obtenue par frittage de précision (classe M)
- 14 arêtes, plaquette neutre réversible
- Angle de coupe de 20° pour une prise de puissance réduite. Premier choix pour l'ébauche et la finition

Plaquette renforcée **HK**

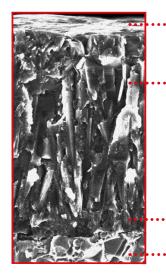
- Plaquette obtenue par frittage de précision (classe M)
- 14 arêtes, plaquette neutre réversible
- Résistance à l'écaillage élevée, pour l'usinage au choc ou à forte

Plaquette de planage WK

- 2 arêtes à droite, 2 arêtes à gauche.
- Selon le nombre de plaquettes et les conditions de coupe, l'utilisation de plaquettes de planage peut améliorer l'état de surface.

Les plaquettes pour l'AHX640W sont compatibles avec l'AHX640S. Veuillez vous reporter à la page 8 pour l'utilisation appropriée de la plaquette XC5010.

SÉRIE MV1000


NUANCE DE FRAISAGE REVÊTUE

RÉSISTANCE À L'USURE AMÉLIORÉE

L'adoption d'un revêtement AlTiN à forte teneur d'aluminium permet d'obtenir une très haute dureté du revêtement. Cela améliore de façon considérable la résistance à l'oxydation et à l'usure.

RÉSISTANCE AUX CHOCS THERMIQUES AUGMENTÉE

La très grande résistance à la chaleur extrême de cette nouvelle série de nuances permet d'atteindre une stabilité remarquable de la durée de vie, non seulement en usinage à sec mais également sous arrosage, où les plaquettes sont généralement sujettes à la fissuration thermique.

EXCELLENTE RÉSISTANCE AU COLLAGE

Revêtement très lisse.

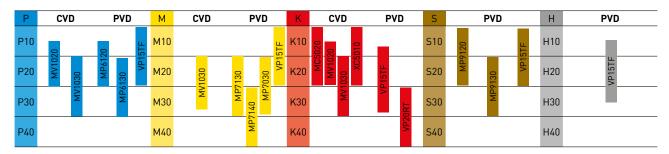
RÉSISTANCE EXTRAORDINAIRE À L'USURE

Revêtement Al-Rich de dernière génération.

GRANDE RÉSISTANCE À L'ÉCAILLAGE POUR UNE HAUTE FIABILITÉ

Couche d'accroche de dernière technologie.

RÉSISTANCE À L'ÉCAILLAGE

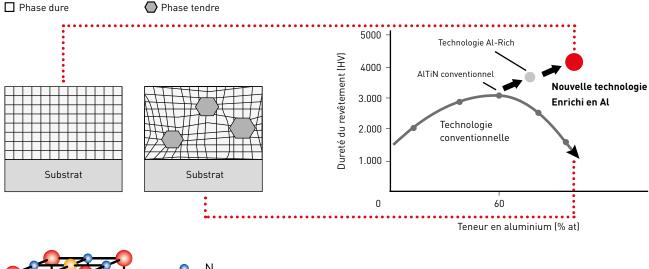

Substrat carbure spécifique.

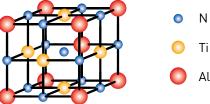
MV1020

L'excellente résistance à l'usure et aux chocs thermiques de cette nuance permet d'obtenir des durées de vies stables à vitesses de coupe inégalées, particulièrement dans l'acier et de la fonte ductile, ce qui permet une augmentation significative de la productivité.

MV1030

Le nouveau revêtement AlTiN à forte teneur d'aluminium assure une excellente résistance à l'usure. La nuance possède une grande résistance à l'écaillage, en particulier lors en coupe lubrifiée et lors de l'usinage d'aciers inoxydables.

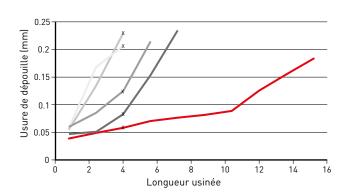

Pour les aciers inoxydables, l'usinage à sec avec la nuance MV1030 est recommandé.


MV1020/MV1030

NOUVEAU REVÊTEMENT ALTIN CVD

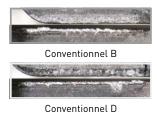
HAUTE RÉSISTANCE À L'USURE ET AUX CHOCS THERMIQUES

Avec l'adoption de la technologie Al-Rich, un revêtement de type AlTiN à très forte teneur en aluminium, il est possible d'obtenir des couches de revêtement d'une dureté très élevée. Cela améliore de façon considérable la résistance à l'oxydation et à l'usure. La très haute résistance à la chaleur de cette nouvelle famille de nuances permet d'atteindre des performances remarquables, non seulement en usinage à sec mais également sous arrosage, où les plaquettes sont généralement sujettes à la fissuration thermique. La nuance MV1020 offre des performances très largement supérieures en fraisage à grande vitesse, et MV1030 atteint des performances stables lors de l'usinage interrompu et dans les aciers inoxydables.

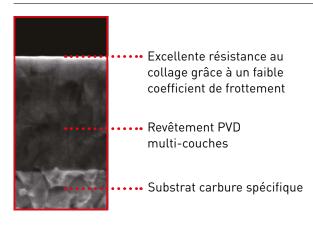


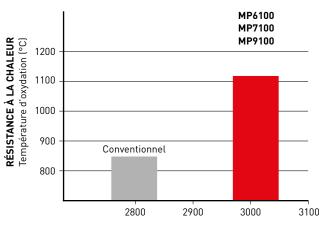
Structure cristalline du revêtement MV1000

PERFORMANCES DE COUPE


RÉSISTANCE À L'USURE DANS LA FONTE DUCTILE

Matière de la pièce	GJS 700-2
Outil	AHX440
Plaquette	NNMU130508ZEN-M
Vc (m/min)	300
fz (mm)	0.1
ap (mm)	2.0
ae (mm)	52
Arrosage	Usinage à sec Plaquette unique




■: MV1020 ■ A ■ B ■ C ■ D : Outil conventionnel

MP6100/MP7100/MP9100

NUANCES PVD SPÉCIFIQUES

REVÊTEMENT PVD MULTI-COUCHES À BASE AL-Ti-Cr-N



RÉSISTANCE À L'USURE Dureté (Hv)

COEFFICIENT DE FROTTEMENT

Matière	Nuanca	Coefficient de friction (mesuré à 600 °C)					
	Nuance –	C55	X10CrNi18-9	Ti6AI4V			
Acier carbone, acier allié	MP6100	0.4					
Acier inoxydable	MP7100		0.5				
Alliage de titane, alliage réfractaire	MP9100		0.7	0.3			
Conventionnel		0.7		0.7			

TOUGH-Σ

Chaque nuance a un revêtement adapté à son domaine d'application

Couche de base AlTiN

La nouvelle technologie de revêtement AlTiN à forte teneur en aluminium permet le dépôt de couches de très haute dureté et permet d'améliorer considérablement la résistance à l'usure en dépouille et en cratère et au collage.

Р	PVD	М	PVD	K	CVD	PVD	S	PVD	Н	PVD
P10	5120 5TF	M10	STF	K10	010		S10	120 5TF	H10	
P20	130 VP1	M20	7130 7030 VP1	K20	MCE XC5		S20	130 VP1	H20	P15TF
P30	MP6	M30	MP.7	K30		. Land	S30	МР9	H30	>
P40		M40	MP7	K40		VP2	S40		H40	

MC5020

La nuance MC5020 présente une excellente résistance à l'usure, à l'écaillage et à la fissuration thermique. Ces caractéristiques empêchent les problèmes généralement associés à l'usinage de la fonte sur des durées prolongées.

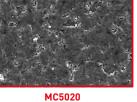
Structure de MC5020

RÉSISTANCE À L'USURE AMÉLIORÉE

Les couches de TiCN fibreuses et d'Al₂O₃ micro-grain offrent une excellente résistance à l'usure lors du fraisage d'une large gamme de fontes.

AMÉLIORATION DE LA RÉSISTANCE À L'ÉCAILLAGE

L'utilisation d'un substrat carbure spécialement conçu pour offrir une résistance améliorée à l'écaillage et à la fissuration thermique empêche la dégradation soudaine de l'arête de coupe.


RÉDUCTION DU COLLAGE

Le revêtement noir extrêmement lisse empêche tout endommagement anormal tel que l'écaillage dû aux arêtes rapportées.

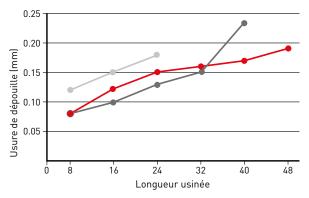
REVÊTEMENT NOIR EXTRÊMEMENT LISSE

COMPARAISON DE LA SURFACE DU REVÊTEMENT

Conventionnel

PERFORMANCES DE COUPE

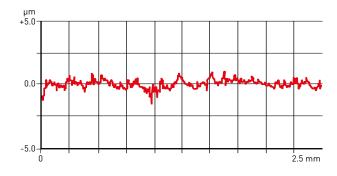
RÉSISTANCE À L'USURE



État de surface

PERFORMANCES DE COUPE

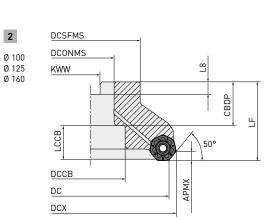
RÉSISTANCE À L'USURE


Matière de la pièce	FGL300
Outil	AHX640WR10010D
Plaquette	NNMU200608ZEN-MK
Vc (m/min)	300
fz (mm)	0.3
ap (mm)	5.0
ae (mm)	100
Arrosage	Usinage à sec Plaquette unique

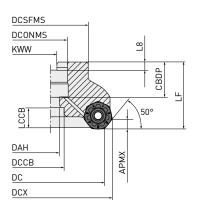
Évolution de l'usure (essai à une plaquette)

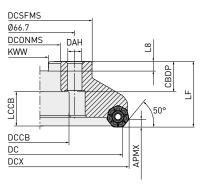
ÉTAT DE SURFACE

Matière de la pièce	FGS700-2
Outil	AHX640WR10014D
Plaquette	NNMU200608ZEN-MK
Plaquette racleuse	WNEU2006ZEN7C-WK
Vc (m/min)	350
fz (mm)	0.1
ap (mm)	0.4
ae (mm)	80
Arrosage	Soufflage d'air



FRAISE





Ø 40 Ø 50 Ø 63 Ø 80

3

Ø 160

Outil à droite uniquement.

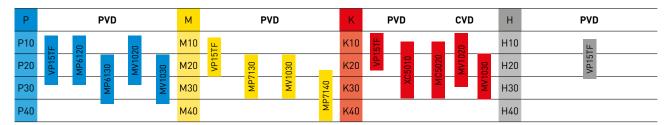
Type de porte-outil	Référe d'attach			Géométrie
Type de porte-oditi		X	-	Geometrie
AHX440S-040ACCAR	HSC08025H	HSC08040		1
AHX440S-050ACAR	HSC10030H	HSC10035		
AHX440S-063AOOAR	HSC10030H	HSC10035	1	
AHX440S-080ACCAR	HSC12035H :	HSC12035		
AHX44US-U8UACCAR	HSC12035H	HSC12045		
AHX440S-100BOOAR	MBA16033H	_	- 2	2
AHX440S-125BOOAR	MBA20040H	_	Z	

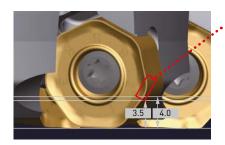
AHX440S - FRAISE

ATTACHEMENT PAR ALÉSAGE

Référence	Stock	APMX	DC	DCONMS	LF	WT	ZEFF		Type
AHX440S-040A03AR	•	3	40	16	40	0.3	3	0	1
AHX440S-040A04AR	•	3	40	16	40	0.2	4	0	1
AHX440S-050A04AR	•	3	50	22	40	0.4	4	0	1
AHX440S-050A05AR	•	3	50	22	40	0.4	5	0	1
AHX440S-050A06AR	•	3	50	22	40	0.4	6	0	1
AHX440S-063A05AR	•	3	63	22	40	0.6	5	0	1
AHX440S-063A06AR	•	3	63	22	40	0.6	6	0	1
AHX440S-063A08AR	•	3	63	22	40	0.5	8	0	1
AHX440S-080A06AR	•	3	80	27	50	1.1	6	0	1
AHX440S-080A08AR	•	3	80	27	50	1.1	8	0	1
AHX440S-080A10AR	•	3	80	27	50	1.1	10	0	1
AHX440S-100B07AR	•	3	100	32	50	1.6	7	0	2
AHX440S-100B10AR	•	3	100	32	50	1.6	10	0	2
AHX440S-100B12AR	•	3	100	32	50	1.6	12	0	2
AHX440S-125B08AR	•	3	125	40	63	3.0	8	0	2
AHX440S-125B12AR	•	3	125	40	63	3.0	12	0	2
AHX440S-125B14AR	•	3	125	40	63	2.9	14	0	2
AHX440S-160C10NR	•	3	160	40	63	4.8	10	_	3
AHX440S-160C14NR	•	3	160	40	63	4.6	14	_	3
AHX440S-160C16NR	•	3	160	40	63	4.7	16	_	3

Le corps de la fraise est livré sans vis de fixation pour l'arbre. Veuillez commander la vis séparément. \bigcirc = Avec trous d'arrosage

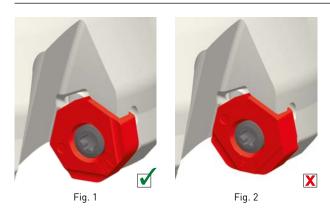

DIMENSIONS DE MONTAGE


Référence	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Type
AHX440S-040A03AR	18	9		16	37	48.4	8.4	5.6	1
AHX440S-040A04AR	18	9	_	16	37	48.4	8.4	5.6	1
AHX440S-050A04AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-050A05AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-050A06AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-063A05AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-063A06AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-063A08AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-080A06AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-080A08AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-080A10AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-100B07AR	32	_	45	32	78	108.4	14.4	8	2
AHX440S-100B10AR	32	_	45	32	78	108.4	14.4	8	2
AHX440S-100B12AR	32	_	45	32	78	108.3	14.4	8	2
AHX440S-125B08AR	40	_	56	40	89	133.4	16.4	9	2
AHX440S-125B12AR	40	_	56	40	89	133.4	16.4	9	2
AHX440S-125B14AR	40	_	56	40	89	133.3	16.4	9	2
AHX440S-160C10NR	40	_	56	40	100	168.4	16.4	9	3
AHX440S-160C14NR	40	_	56	40	100	168.4	16.4	9	3
AHX440S-160C16NR	40	_	56	40	100	168.4	16.4	9	3

AHX440S - PLAQUETTES

Acier			C	*				C	C	C			d'utilis					
Acier inoxydable						#				C	● : C	oupe s	table	€ : Co	upe géné	rale 🗱 : Coupe	instable	
Fonte ductile							C	•	•	¢	Honi	na :						
Aciers traités										¢	E : R	-						
Référence	Classe	Honing	MP6120	MP6130	MP7130	MP7140	MC5020	MV1020	MV1030	VP15TF	IC	S	BS	RE	АРМХ	Ge	éométrie	
NNMU130508ZER-L	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	1	0.8	3			
NNMU130508ZEN-M	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	1	0.8	4*			h
NNMU130532ZEN-M	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	_	3.2	4*			٣
NNMU130532ZEN-R	М	Ε	•	•	•	•	•	•	•	•	13.4	5.09	_	3.2	4*		BS RE	
WNEU1305ZEN4C-M	Е	Е	•				•			•	13.4	5.09	4	2.7	0.5		<u>+</u>	
																0	BS RE	

SYSTÈME DE BRISE-COPEAUX



ROTATION DES PLAQUETTES

En utilisant une profondeur de passe de 4.0 mm, l'arête adjacente s'use également. On évite cela en limitant la profondeur de passe à 3.5 mm. La rotation des plaquettes doit se faire en sens antihoraire. La rotation en sens antihoraire permet généralement d'utiliser 6 arêtes par face lorsqu'on utilise des profondeurs de passe supérieures à 3.5 mm.

UTILISATION DES PLAQUETTES DE PLANAGE

Les plaquettes de planage ont 2 arêtes de coupe à droite et 2 arêtes à gauche. (Cf. figure 1.)
Une seule plaquette de planage permet généralement d'obtenir un état de surface satisfaisant. Toutefois, si l'avance par tour est égale ou supérieure à la largeur de l'arête de planage (cote BS), il est recommandé d'installer plusieurs plaquettes de planage espacées de façon régulière sur le corps de fraise.

CONDITIONS DE COUPE RECOMMANDÉES

USINAGE À SEC

	Acier doux						
	Acier doux		MV1020	300 (200–400)	0.30 (0.20-0.40)	≼ 3	<0.8DC
_	Acier doux		MP6120	250 (200–300)	0.30 (0.20-0.40)	≤ 3	≤0.8DC
_		<180HB	VP15TF	250 (200–300)	0.30 (0.20-0.40)	≤ 3	<0.8DC
_			MV1030	245 (190–300)	0.30 (0.20-0.40)	≤ 3	≤0.8DC
			MP6130	240 (190–290)	0.30 (0.20-0.40)	≤ 3	<0.8DC
			MV1020	260 (170–350)	0.30 (0.20-0.40)	≼3	<0.8DC
			MP6120	220 (170–270)	0.30 (0.20-0.40)	≼3	<0.8DC
		180-280HB	VP15TF	220 (170–270)	0.30 (0.20-0.40)	≼3	<0.8DC
			MV1030	210 (150–270)	0.30 (0.20-0.40)	≤ 3	<0.8DC
D	Acier au carbone/		MP6130	200 (150-250)	0.30 (0.20-0.40)	≤ 3	≤0.8DC
P	faiblement allié		MV1020	180 (100–250)	0.30 (0.20-0.40)	≤ 3	≤0.8DC
			MP6120	140 (100–180)	0.30 (0.20-0.40)	≼3	≤0.8DC
		280-350HB	VP15TF	140 (100–180)	0.30 (0.20-0.40)	≼3	≤0.8DC
			MV1030	135 (90–180)	0.30 (0.20-0.40)	≼3	≤0.8DC
			MP6130	120 (90–150)	0.30 (0.20-0.40)	≤ 3	≤0.8DC
			MP6120	140 (100–180)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
	Acier à outils allié	≤350HB	VP15TF	140 (100–180)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
			MP6130	120 (90–150)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
	A - ! ! + - ! + ! + ! + ! + - ! + ! + - ! + ! + - ! + ! + - ! + ! + -	25 /51100	MP6120	140 (100–180)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
	Acier pré-traité	35-45HRC	MP6130	120 (90–150)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
			MP7130	200 (150–250)	0.20 (0.10-0.30)	≼3	≤0.8DC
		000110	VP15TF	200 (150–250)	0.20 (0.10-0.30)	≼3	<0.8DC
		≤200HB	MV1030	185 (120–250)	0.20 (0.10-0.30)	≼3	<0.8DC
	Aciers inoxydables		MP7140	180 (120–230)	0.20 (0.10-0.30)	≼3	<0.8DC
	austénitiques		MP7130	150 (100–200)	0.20 (0.10-0.30)	≼3	<0.8DC
		000110	VP15TF	150 (100–200)	0.20 (0.10-0.30)	≼3	<0.8DC
		≽200HB	MV1030	140 (80-200)	0.20 (0.10-0.30)	≼3	<0.8DC
			MP7140	130 (80–180)	0.20 (0.10-0.30)	≼3	<0.8DC
			MP7130	200 (150–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
		000115	VP15TF	200 (150–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
		≤200HB	MV1030	185 (120–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
М	Aciers inoxydables		MP7140	180 (120–230)	0.20 (0.10-0.30)	≼3	<0.8DC
	ferritiques et martensitiques		MP7130	150 (100–200)	0.20 (0.10-0.30)	≤ 3	<0.8DC
			VP15TF	150 (100–200)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
		≥200HB	MV1030	140 (80–200)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
			MP7140	130 (80–180)	0.20 (0.10-0.30)	≤ 3	<0.8DC
			MP7130	140 (100–180)	0.15 (0.20-0.20)	≤ 3	≤0.8DC
	Aciers inoxydables duplex	≤280HB	VP15TF	140 (100–180)	0.15 (0.20-0.20)	≤ 3	<0.8DC
			MP7140	120 (80–160)	0.15 (0.20-0.20)	≤ 3	≤0.8DC
			MP7130	130 (100–160)	0.15 (0.20-0.20)	≼3	<0.8DC
	Aciers inoxydables traités	≤450HB	VP15TF	130 (100–160)	0.15 (0.20-0.20)	≤ 3	<0.8DC
			MP7140	110 (80–140)	0.15 (0.20-0.20)	≼3	<0.8DC

Réduire de la vitesse de coupe lors de l'utilisation de l'arrosage.

CONDITIONS DE COUPE RECOMMANDÉES

USINAGE À SEC

Propriétés	Nuance	Vc	fz	ар	ae
OFOMB	MC5020	220 (150–300)	0.30 (0.20-0.40)	≼3	<0.8DC
<35UMPa	VP15TF	180 (130–230)	0.30 (0.20-0.40)	≼3	≤0.8DC
	MV1020	240 (130–350)	0.20 (0.10-0.30)	≼3	<0.8DC
4/EOMPa	MC5020	220 (150–300)	0.20 (0.10-0.30)	≼3	<0.8DC
<45UMPa	MV1030	185 (120–250)	0.20 (0.10-0.30)	≼3	<0.8DC
	VP15TF	170 (120–220)	0.20 (0.10-0.30)	≼3	<0.8DC
	MV1020	220 (80-350)	0.20 (0.10-0.30)	≼3	<0.8DC
000145	MC5020	170 (150–200)	0.20 (0.10-0.30)	≼3	<0.8DC
<8UUMPa	MV1030	150 (100–200)	0.20 (0.10-0.30)	≼3	≤0.8DC
	VP15TF	140 (100–180)	0.20 (0.10-0.30)	≼3	≤0.8DC
40-55HRC	VP15TF	80 (60–100)	0.15 (0.10-0.20)	≤ 1	≤0.8DC
	<350MPa <450MPa <800MPa 40–55HRC	<350MPa VP15TF MV1020 MC5020 MV1030 VP15TF MV1020 MV1020 MV1020 MC5020 MV1030 VP15TF	<350MPa	VP15TF 180 (130-230) 0.30 (0.20-0.40) 4450MPa MV1020 240 (130-350) 0.20 (0.10-0.30) MC5020 220 (150-300) 0.20 (0.10-0.30) MV1030 185 (120-250) 0.20 (0.10-0.30) VP15TF 170 (120-220) 0.20 (0.10-0.30) MV1020 220 (80-350) 0.20 (0.10-0.30) MV5020 170 (150-200) 0.20 (0.10-0.30) MV1030 150 (100-200) 0.20 (0.10-0.30) VP15TF 140 (100-180) 0.20 (0.10-0.30)	VP15TF 180 (130-230) 0.30 (0.20-0.40) <3 450MPa MV1020 240 (130-350) 0.20 (0.10-0.30) <3

Réduire de la vitesse de coupe lors de l'utilisation de l'arrosage.

CONDITIONS DE COUPE RECOMMANDÉES

COUPE LUBRIFIÉE

	Matière	Propriétés	Nuance	Vc	fz	ар	ae
			MP7130	125 (100–150)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
		≤200HB	VP15TF	125 (100-150)	0.15 (0.10-0.20)	≼3	<0.8DC
	Aciers inoxydables		MP7140	100 (80-140)	0.15 (0.10-0.20)	≤ 3	<0.8DC
	austénitiques		MP7130	100 (75–125)	0.15 (0.10-0.20)	≼3	≤0.8DC
		≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
			MP7140	80 (55–105)	0.15 (0.10-0.20)	≼3	≤0.8DC
			MP7130	125 (100–150)	0.15 (0.10-0.20)	≼3	≤0.8DC
		≤200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
М	Aciers inoxydables		MP7140	100 (80–140)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
M	ferritiques et martensitiques		MP7130	100 (75–125)	0.15 (0.10-0.20)	≼3	≤0.8DC
		≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≼3	≤0.8DC
			MP7140	80 (55–105)	0.15 (0.10-0.20)	≼3	≤0.8DC
			MP7130	80 (60–100)	0.10 (0.05-0.15)	≼3	≤0.8DC
	Aciers inoxydables duplex	≤280HB	VP15TF	80 (60–100)	0.10 (0.05-0.15)	≼3	≤0.8DC
			MP7140	60 (40- 80)	0.10 (0.05-0.15)	≼3	<0.8DC
			MP7130	70 (50- 90)	0.10 (0.05-0.15)	≤ 3	≤0.8DC
	Aciers inoxydables traités	≤450HB	VP15TF	70 (50- 90)	0.10 (0.05-0.15)	≤ 3	<0.8DC
			MP7140	50 (30- 70)	0.10 (0.05-0.15)	≼3	<0.8DC

CONDITIONS DE COUPE RECOMMANDÉES

CONDITION DE COUPE AVEC PLAQUETTE DE PLANAGE

Matière	Propriétés	Nuance	Vc	fz	ар
Acier doux	<180HB	MP6120	250 (200–300)	0.30 (0.20-0.40)	≤0.5
Aciei doux	<10000	VP15TF	250 (200–300)	0.30 (0.20-0.40)	≤0.5
	180-280HB	MP6120	220 (170–270)	0.30 (0.20-0.40)	≤0.5
Acier au carbone/	100-20000	VP15TF	220 (170–270)	0.30 (0.20-0.40)	≤0.5
faiblement allié	280-350HB	MP6120	140 (100–180)	0.30 (0.20-0.40)	≤0.5
	200-30000	VP15TF	140 (100–180)	0.30 (0.20-0.40)	≤0.5
Acier à outils allié	≼350HB	MP6120	140 (100–180)	0.15 (0.10-0.20)	<0.5
Aciel a outils attie	€330⊔D	VP15TF	140 (100–180)	0.15 (0.10-0.20)	<0.5
A sian prá troitá	35-45HRC	MP6120	140 (100–180)	0.15 (0.10-0.20)	≤0.
Acier pré-traité	30-43HKC	VP15TF	140 (100–180)	0.15 (0.10-0.20)	≤0.
Aciers inoxydables	<200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤0.!
usténitiques	≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≤0.
ciers inoxydables	<200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤0.
ferritiques et martensitiques	≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≤0.
Aciers inoxydables duplex	≤280HB	VP15TF	80 (60–100)	0.10 (0.05-0.15)	≤0.
Aciers inoxydables traités	<450HB	VP15TF	70 (50- 90)	0.10 (0.05-0.15)	≤0.
Fonte grise	<350MPa	MC5020	320 (250–400)	0.30 (0.20-0.40)	≤0.
Fonte grise	<350MPa	VP15TF	220 (150–300)	0.30 (0.20-0.40)	≤0.!
	<450MPa	MC5020	250(200-300)	0.20 (0.10-0.30)	≤ 0.!
Fonte ductile	<43UMPa	VP15TF	200 (150–250)	0.20 (0.10-0.30)	.0≥
onte ductile		MC5020	220 (200–250)	0.20 (0.10-0.30)	≤0.5
	<8UUMPa	VP15TF	170 (150–200)	0.20 (0.10-0.30)	≤0.5
Acier traité	40-55HRC	VP15TF	80 (60–100)	0.15 (0.10-0.20)	≤0.5

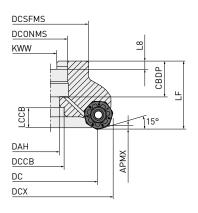
 $Reportez\hbox{-}vous\ au\ tableau\ ci\hbox{-}dessus\ pour\ les\ vitesses\ de\ coupe\ et\ avances.$

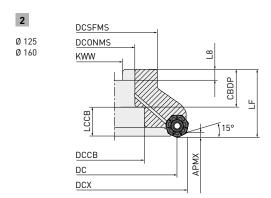
Il est recommandé d'utiliser l'arrosage pour obtenir un meilleur état de surface.

⁽La durée de vie sera réduite par rapport à l'usinage à sec.) La profondeur de passe dépend du brise-copeaux utilisé.

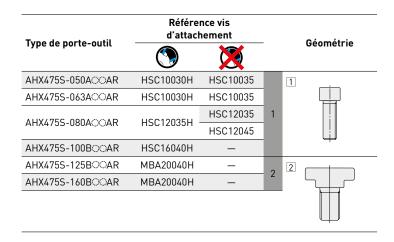
En cas de faibles raideurs de bridage ou de machine ou de grands porte-à-faux, veuillez réduire les vitesses de coupe et d'avance de 30 %.

AHX475S





FRAISE À PLAQUETTES GRANDE AVANCE



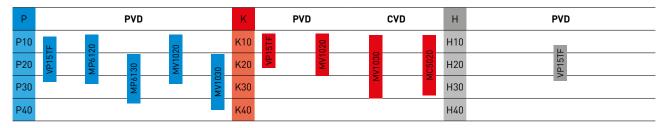
Outil à droite uniquement.

AHX475S - FRAISE À PLAQUETTES GRANDE AVANCE

ATTACHEMENT PAR ALÉSAGE

Référence	Stock	АРМХ	DC	DCONMS	LF	WT	ZEFF		Туре
AHX475S-050A04AR	•	1.6	50	22	50	0.6	4	0	1
AHX475S-050A05AR	•	1.6	50	22	50	0.6	5	0	1
AHX475S-063A05AR	•	1.6	63	22	50	1.0	5	0	1
AHX475S-063A06AR	•	1.6	63	22	50	0.9	6	0	1
AHX475S-080A06AR	•	1.6	80	27	50	1.6	6	0	1
AHX475S-080A08AR	•	1.6	80	27	50	1.5	8	0	1
AHX475S-100A07AR	•	1.6	100	32	63	3.2	7	0	2
AHX475S-100A09AR	•	1.6	100	32	63	3.2	9	0	2
AHX475S-125B08AR	•	1.6	125	40	63	3.8	8	0	2
AHX475S-125B10AR	•	1.6	125	40	63	3.8	10	0	2
AHX475S-160B10AR	•	1.6	160	40	63	5.4	10	0	2
AHX475S-160B12AR	•	1.6	160	40	63	5.3	12	0	2

Le corps de la fraise est livré sans vis de fixation pour l'arbre. Veuillez commander la vis séparément. \bigcirc = Avec trous d'arrosage


DIMENSIONS DE MONTAGE

CBDP								
	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
20	11	17	22	47	65.6	10.4	6.3	1
20	11	17	22	47	65.6	10.4	6.3	1
20	11	17	22	60	78.6	10.4	6.3	1
20	11	17	22	60	78.6	10.4	6.3	1
23	13	20	27	76	95.6	12.4	7	1
23	13	20	27	76	95.6	12.4	7	1
26	17	26	32	96	115.6	14.4	8	2
26	17	26	32	96	115.6	14.4	8	2
40	56	_	40	100	140.6	16.4	9	2
40	56	_	40	100	140.6	16.4	9	2
40	56	_	40	100	175.6	16.4	9	2
40	56	_	40	100	175.6	16.4	9	2
	20 20 20 20 23 23 26 26 40 40	20 11 20 11 20 11 20 11 20 17	20 11 17 20 11 17 20 11 17 20 11 17 23 13 20 26 17 26 26 17 26 40 56 - 40 56 - 40 56 - 40 56 -	20 11 17 22 20 11 17 22 20 11 17 22 20 11 17 22 23 13 20 27 26 17 26 32 26 17 26 32 40 56 - 40 40 56 - 40 40 56 - 40	20 11 17 22 47 20 11 17 22 60 20 11 17 22 60 20 11 17 22 60 23 13 20 27 76 26 17 26 32 96 26 17 26 32 96 40 56 - 40 100 40 56 - 40 100 40 56 - 40 100	20 11 17 22 47 65.6 20 11 17 22 60 78.6 20 11 17 22 60 78.6 23 13 20 27 76 95.6 23 13 20 27 76 95.6 26 17 26 32 96 115.6 26 17 26 32 96 115.6 40 56 - 40 100 140.6 40 56 - 40 100 140.6 40 56 - 40 100 175.6	20 11 17 22 47 65.6 10.4 20 11 17 22 60 78.6 10.4 20 11 17 22 60 78.6 10.4 23 13 20 27 76 95.6 12.4 23 13 20 27 76 95.6 12.4 26 17 26 32 96 115.6 14.4 26 17 26 32 96 115.6 14.4 40 56 — 40 100 140.6 16.4 40 56 — 40 100 140.6 16.4 40 56 — 40 100 175.6 16.4	20 11 17 22 47 65.6 10.4 6.3 20 11 17 22 60 78.6 10.4 6.3 20 11 17 22 60 78.6 10.4 6.3 23 13 20 27 76 95.6 12.4 7 23 13 20 27 76 95.6 12.4 7 26 17 26 32 96 115.6 14.4 8 26 17 26 32 96 115.6 14.4 8 40 56 — 40 100 140.6 16.4 9 40 56 — 40 100 140.6 16.4 9 40 56 — 40 100 175.6 16.4 9

AHX475S - PLAQUETTES

Acier			C	*		C	C	C		litions o					
Fonte ductile					C	C	C	¢	• : C	oupe st	able	C : Co	upe général	e 🗱 : Coupe instable	
Aciers traités								C	Honi	ng : E :	Rayon				
Référence	Classe	Honing	MP6120	MP6130	MC5020	MV1020	MV1030	VP15TF	IC	S	BS	RE	APMX	Géométrie	
NNMU130532ZEN-M	М	Е	•	•	•	•	•	•	13.4	5.09	_	3.2	1.6		
NNMU130532ZEN-R	М	Е	•	•	•	•	•	•	13.4	5.09	_	3.2	1.6		
NNMU130532ZEN-R	М	E	•	•	•	•	•	•	13.4	5.09	_	3.2	1.6	BS	

CLASSIFICATION DES NUANCES

● : Article stocké. ★ : Article stocké au Japon.

AHX475S

CONDITIONS DE COUPE RECOMMANDÉES

USINAGE À SEC

Matière	Propriétés	Nuance		Vc	fz	ар	ae
		MV1020	R	220 (170 – 270)	0.6	≤1.6	<0.5DC
		MV1020	R	220 (170 – 270)	0.8	≤1.6	0.5 - 0.8DC
		MV1020	М	220 (170 – 270)	1.0	≤1.6	0.8 - 1DC
		MP6120	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
		MP6120	R	150 (100 – 200)	0.8	≤1.6	0.5 - 0.8DC
Acier doux	<180HB	MP6120	М	150 (100 – 200)	1.0	≤1.6	0.8 - 1DC
Aciel doux	<100HB	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
		MV1030	R	140 (80 – 200)	0.8	≤1.6	0.5 - 0.8DC
		MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 - 1DC
		MP6130	R	130 (80 – 180)	0.6	≤1.6	<0.5DC
		MP6130	R	130 (80 – 180)	0.8	≤1.6	0.5 - 0.8DC
		MP6130	М	130 (80 – 180)	1	≤1.6	0.8 - 1DC
		MV1020	R	200 (150 – 250)	0.6	≤1.6	<0.5DC
		MV1020	R	200 (150 – 250)	0.8	≤1.6	0.5 - 0.8DC
		MV1020	М	200 (150 – 250)	1.0	≤1.6	0.8 – 1DC
		MP6120	R	130 (80 – 180)	0.6	≤1.6	<0.5DC
		MP6120	R	130 (80 – 180)	0.8	≤1.6	0.5 - 0.8DC
Acier au carbone/	100 000110	MP6120	М	130 (80 – 180)	1.0	≤1.6	0.8 – 1DC
faiblement allié	180-280HB	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
		MV1030	R	140 (80 – 200)	0.8	≤1.6	0.5 - 0.8DC
		MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 - 1DC
		MP6130	R	110 (60 – 160)	0.6	≤1.6	<0.5DC
		MP6130	R	110 (60 – 160)	0.8	≤1.6	0.5 - 0.8DC
		MP6130	М	110 (60 – 160)	1	≤1.6	0.8 – 1DC
		MV1020	R	150 (100 – 200)	0.5	≤1.6	<0.5DC
		MV1020	R	150 (100 – 200)	0.6	≤1.6	0.5 - 0.8DC
		MV1020	R	150 (100 – 200)	0.7	≤1.6	0.8 - 1DC
		MP6120	R	100 (50 – 150)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (50 – 150)	0.6	≤1.6	0.5 - 0.8DC
Acier au carbone/		MP6120	R	100 (50 – 150)	0.7	≤1.6	0.8 – 1DC
faiblement allié	280-350HB	MV1030	R	90 (30 – 150)	0.5	≤1.6	<0.5DC
		MV1030	R	90 (30 – 150)	0.6	≤1.6	0.5 - 0.8DC
		MV1030	R	90 (30 – 150)	0.7	≤1.6	0.8 – 1DC
		MP6130	R	80 (30 – 130)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (30 – 130)	0.6	≤1.6	0.5 - 0.8DC
		MP6130	R	80 (30 – 130)	0.7	≤1.6	0.8 – 1DC
		MP6120	R	100 (50 – 150)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (50 – 150)	0.6	≤1.6	0.5 - 0.8DC
		MP6120	R	100 (50 – 150)	0.7	≤1.6	0.8 – 1DC
Acier à outils allié	<350HB	MP6130	R	80 (30 – 120)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (30 – 120)	0.6	≤1.6	0.5 - 0.8DC
		MP6130	R	80 (30 – 120)	0.7	≤1.6	0.8 – 1DC
		MP6120	R	100 (70 – 130)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (70 – 130)	0.6	≤1.6	0.5 - 0.8DC
		MP6120	R	100 (70 – 130)	0.7	≤1.6	0.8 – 1DC
Acier pré-traité	35-45HRC	MP6130	R	80 (50 – 110)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (50 – 110)	0.6	€1.6	0.5 – 0.8DC
		MP6130	R	80 (50 – 110)	0.7	€1.6	0.8 – 1DC

28

AHX475S

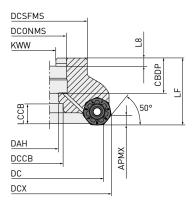
CONDITIONS DE COUPE RECOMMANDÉES

USINAGE À SEC

	Matière	Propriétés	Nuance		Vc	fz	ар	ae
			MC5020	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.8	≤1.6	0.5 - 0.8DC
	F	OFOMB	MC5020	М	150 (100 – 200)	1.0	≤1.6	0.8 - 1DC
	Fonte grise	<350MPa	VP15TF	R	120 (80 – 160)	0.6	≤1.6	<0.5DC
			VP15TF	R	120 (80 – 160)	0.8	≤1.6	0.5 - 0.8DC
			VP15TF	М	120 (80 – 160)	1.0	≤1.6	0.8 - 1DC
			MV1020	R	200 (150 – 250)	0.6	≤1.6	<0.5DC
			MV1020	R	200 (150 – 250)	0.8	≤1.6	0.5 - 0.8DC
			MV1020	М	200 (150 – 250)	1.0	≤1.6	0.8 - 1DC
			MC5020	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.8	≤1.6	0.5 - 0.8DC
	Face docable	/FOMD	MC5020	М	150 (100 – 200)	1.0	≤1.6	0.8 - 1DC
	Fonte ductile	<450MPa	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
			MV1030	R	140 (80 – 200)	0.8	≤1.6	0.5 - 0.8DC
U		MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 - 1DC	
K		VP15TF	R	120 (80 – 160)	0.6	≤1.6	<0.5DC	
			VP15TF	R	120 (80 – 160)	0.8	≤1.6	0.5 - 0.8DC
			VP15TF	М	120 (80 – 160)	1	≤1.6	0.8 - 1DC
			MV1020	R	180 (130 – 230)	0.5	≤1.6	<0.5DC
			MV1020	R	180 (130 – 230)	0.6	≤1.6	0.5 - 0.8DC
			MV1020	R	180 (130 – 230)	0.7	≤1.6	0.8 - 1DC
			MC5020	R	150 (100 – 200)	0.5	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.6	≤1.6	0.5 - 0.8DC
	Fonto dustilo	.000MD-	MC5020	R	150 (100 – 200)	0.7	≤1.6	0.8 – 1DC
	Fonte ductile	<800MPa	MV1030	R	140 (80 – 200)	0.5	≤1.6	<0.5DC
			MV1030	R	140 (80 – 200)	0.6	≤1.6	0.5 – 0.8DC
			MV1030	R	140 (80 – 200)	0.7	≤1.6	0.8 – 1DC
			VP15TF	R	120 (80 – 160)	0.5	≤1.6	<0.5DC
			VP15TF	R	120 (80 – 160)	0.6	≤1.6	0.5 - 0.8DC
			VP15TF	R	120 (80 – 160)	0.7	≤1.6	0.8 – 1DC
			VP15TF	R	70 (50 – 90)	0.4	≤1.6	<0.5DC
Н	Acier traité	40-55HRC	VP15TF	R	70 (50 – 90)	0.5	≤1.6	0.5 - 0.8DC
			VP15TF	R	70 (50 – 90)	0.6	≤1.6	0.8 – 1DC

29

AHX640S



FRAISE

1 Ø 63 Ø 80

2 DCSFMS
Ø 100
Ø 125

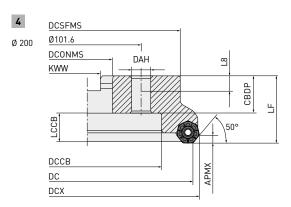
CONMS
Ø 125

CONMS

DCONMS

DCON

DCSFMS
Ø 160


DCSFMS
Ø 66.7

DCONMS
DAH
KWW

DCCB

DC

DCX

Outil à droite uniquement.

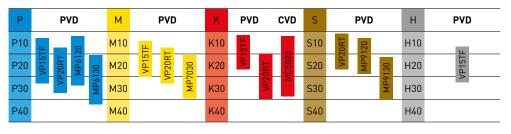
APMX

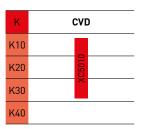
Type de porte-outil	Référence vis d'attachement		Géométrie
AHX640S-063ACCAR	HSC10030H		1
AHX640S-080ACCAR	HSC12035H	1	
AHX640S-100BOOAR	MBA16033H		n†n
AHX640S-125B\@AR	MBA20040H	2	2
AHX640S-160COONR	_	_	
AHX640S-200COONR	_	_	-

AHX640S - FRAISE

ATTACHEMENT PAR ALÉSAGE

Référence	Stock	АРМХ	DC	DCONMS	LF	WT	ZEFF		Туре
AHX640S-063A04AR	•	6	63	22	50	0.7	4	0	1
AHX640S-063A05AR	•	6	63	22	50	0.6	5	0	1
AHX640S-080A04AR	•	6	80	27	50	1.1	4	0	1
AHX640S-080A06AR	•	6	80	27	50	1.0	6	0	1
AHX640S-100B05AR	•	6	100	32	50	1.7	5	0	2
AHX640S-100B07AR	•	6	100	32	50	1.6	7	0	2
AHX640S-125B06AR	•	6	125	40	63	3.1	6	0	2
AHX640S-125B08AR	•	6	125	40	63	3.0	8	0	2
AHX640S-160C07NR	•	6	160	40	63	5.4	7	_	3
AHX640S-160C10NR	•	6	160	40	63	5.2	10	_	3
AHX640S-200C08NR	•	6	200	60	63	7.8	8	_	4
AHX640S-200C12NR	•	6	200	60	63	7.5	12	_	4


○ = Avec trous d'arrosage


DIMENSIONS DE MONTAGE

Référence	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
AHX640S-063A04AR	20	11		22	50	75.55	10.4	6.3	1
AHX640S-063A05AR	20	11		22	50	75.55	10.4	6.3	1
AHX640S-080A04AR	23	13	_	27	56	92.55	12.4	7	1
AHX640S-080A06AR	23	13	_	27	56	92.55	12.4	7	1
AHX640S-100B05AR	32	_	45	32	78	112.55	14.4	8	2
AHX640S-100B07AR	32	_	45	32	78	112.55	14.4	8	2
AHX640S-125B06AR	42		56	40	89	137.55	16.4	9	2
AHX640S-125B08AR	42	_	56	40	89	137.55	16.4	9	2
AHX640S-160C07NR	29	_	56	40	120	172.55	16.4	9	3
AHX640S-160C10NR	29	_	56	40	120	172.55	16.4	9	3
AHX640S-200C08NR	32	_	140	60	175	212.55	25.7	14.22	4
AHX640S-200C12NR	32	_	140	60	175	212.55	25.7	14.22	4

NUANCES CARBURE

NUANCE CÉRAMIQUE

31

● : Article stocké. ★ : Article stocké au Japon.

AHX640S - PLAQUETTES

Р	Acier					•	5 2				•	C						
M	Acier Inoxydable						**				_	_		ditions				
	Fonte			•	E		-	Ť			#		• : (Joupe	stable	C :	Coupe ge	nérale 🗱 : Coupe instable
S	Alliage réfractaire, Allia	ne ti	tane		Ť				e	*	<u>"</u>	-		ing :				
	Acier traité	ge ti	turic		-		-			"	•		E : F	Rayon				
	Aciel traite						-		-		_							
	Référence	Classe	Honing	XC5010	MC5020	MP6120	MP6130	MP7030	MP9120	MP9130	VP15TF	VP20RT	IC	S	BS	RE	АРМХ	Géométrie
	L																	
	NNMU200712ZER-L	М	E						•	•			20	8.0	1.0	1.2	6	BS RE IC S
	M/MP																	
	NNMU200708ZEN-MP	М	Е								•		20	8.0	1.0	8.0	6	
-	NNMU200708ZEN-M	М	Е			•	•						20	8.0	1.0	8.0	6	BS RE IC S
	WP (Wiper)																	* 5
	WNEU2007ZEN7C-WP	М	Е								•		20	7.2	7.1	0.8	6	BS RE S
	ММ											П						
	NNMU200712ZER-MM	М	Е					•					20	8.0	1.0	1.2	6	BSI RE IC S
	MK							ı										
	NNMU200608ZEN-MK	М	Е	•	•						•	*	20	6.55	1.0	0.8	6	BS RE IC S
	НК																	
	NNMU200608ZEN-HK	М	Е		•						•	*	20	6.55	1.0	0.8	6	BS RE IC S
	WK* (Wiper)																	
	WNEU2006ZEN7C-WK	М	E		•								20	6.55	7.4	0.8	6	BS RE S
	FT																	.
	NNMQ200708ZEN-FT	М	E	•									20	6.55	1.0	0.8	6	BS RE IC S

La plaquette brise-copeaux MK/HK/WK est compatible avec AHX640S.

Combinaisons de planeuse possibles : MK/HK avec WK (planeuse) & MP/L/M avec WP (planeuse). Notez que la hauteur diffère quand les plaquettes à brise-copeaux MK/HK sont utilisées.

AHX640S

CONDITIONS DE COUPE RECOMMANDÉES

USINAGE À SEC

	Matière	Propriétés	Conditions	Nuance		Vc	fz	ар	ae
			C	MP6120	М	250 (200–300)	0.30 (0.20-0.40)	≤ 5	<0.8DC
	Acier doux	<180HB	•	VP15TF	MP	250 (200–300)	0.30 (0.20-0.40)	≤5	≤0.8DC
			*	MP6130	М	220 (170–270)	0.40 (0.30-0.50)	≤5	≤0.8DC
			•	MP6120	М	220 (170–270)	0.30 (0.20-0.40)	≤ 5	≤0.8DC
		180-280HB	•	VP15TF	MP	220 (170–270)	0.30 (0.20-0.40)	≤5	≤0.8DC
	Acier au carbone/		*	MP6130	М	190 (140–240)	0.40 (0.30-0.50)	≤5	≤0.8DC
	faiblement allié		•	MP6120	М	140 (100–180)	0.30 (0.20-0.40)	≤5	≤0.8DC
Р		280-350HB	•	VP15TF	MP	140 (100–180)	0.30 (0.20-0.40)	≤ 5	≤0.8DC
			*	MP6130	М	110 (70–150)	0.40 (0.30-0.50)	≤5	≤0.8DC
			•	MP6120	М	140 (100–180)	0.15 (0.10-0.20)	≼3	≤0.8DC
	Acier à outils allié	≤350HB	•	VP15TF	MP	140 (100–180)	0.15 (0.10-0.20)	≼3	≤0.8DC
			*	MP6130	М	110 (70–150)	0.25 (0.20-0.30)	≼3	<0.8DC
			•	MP6120	М	140 (100–180)	0.15 (0.10-0.20)	≼3	<0.8DC
	Acier pré-traité	35-45HRC	•	VP15TF	MP	140 (100–180)	0.15 (0.10-0.20)	≤ 5	<0.8DC
			*	MP6130	М	110 (70–150)	0.25 (0.20-0.30)	≼3	<0.8DC
	Aciers inoxydables	≤200HB	•	MP7030	ММ	200 (150–250)	0.20 (0.10-0.30)	≤5	≤0.8DC
	austénitiques	≥200HB	c	MP7030	ММ	150 (100–200)	0.20 (0.10-0.30)	≤5	<0.8DC
	Aciers inoxydables duplex	≤280HB	¢	MP7030	ММ	140 (100–180)	0.15 (0.05-0.25)	≤ 5	<0.8DC
М	Aciers inoxydables	≤200HB	C	MP7030	ММ	200 (150–250)	0.20 (0.10-0.30)	≤ 5	≤0.8DC
	ferritiques et martensitiques	≥200HB	<u>e</u>	MP7030	ММ	150 (100–200)	0.20 (0.10-0.30)	≤ 5	<0.8DC
	Acier inoxydable à durcissement structural	≤450HB	c	MP7030	ММ	130 (100–160)	0.15 (0.05–0.25)	≤ 5	<0.8DC
			¢	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	≤0.8DC
	- · ·	050110	•	MC5020	MK, HK	220 (150–300)	0.30 (0.20-0.40)	≤5	<0.8DC
	Fonte grise	<350MPa	C	VP15TF	MP	180 (130–230)	0.30 (0.20-0.40)	≤ 5	<0.8DC
			*	VP15TF, VP20RT	MK, HK	180 (130–230)	0.30 (0.20-0.40)	≤5	≤0.8DC
			¢	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	≤0.8DC
		/FOMD	c	MC5020	MK, HK	200 (150–250)	0.20 (0.10-0.30)	≤5	≤0.8DC
K		<450MPa	•	VP15TF	MP	170 (120–220)	0.20 (0.10-0.30)	≤5	≤0.8DC
	Facilia divisita		*	VP15TF, VP20RT	MK, HK	170 (120–220)	0.20 (0.10-0.30)	≤5	≤0.8DC
	Fonte ductile		¢	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	≤0.8DC
		.000MD	•	MC5020	MK, HK	170 (150–200)	0.20 (0.10-0.30)	≤5	≤0.8DC
		<800MPa	•	VP15TF	MP	140 (100–180)	0.20 (0.10-0.30)	≤5	≤0.8DC
			*	VP15TF, VP20RT	MK, HK	140 (100–180)	0.20 (0.10-0.30)	≤5	≤0.8DC
Н	Acier traité	40-55HRC	C	VP15TF	MP	80 (60–100)	0.15 (0.10-0.20)	≼3	≤0.8DC

La coupe lubrifiée est recommandée pour obtenir un meilleur état de surface. (La durée de vie sera plus courte par rapport à l'usinage à sec.)

L'utilisation de l'arrosage interne est recommandée pour les alliages de titane et réfractaires.

En cas de faible raideur de machine ou de bridage ou de grands porte-à-faux, veuillez réduire les vitesses de coupe et d'avance de 30 %.

AHX640S

CONDITIONS DE COUPE RECOMMANDÉES

COUPE LUBRIFIÉE

		Matière	Propriétés	Nuance	~	Vc	fz	ар	ae
		Aciers inoxydables austénitiques	≤200HB	MP7030	ММ	125 (100–150)	0.15 (0.10-0.20)	≤5	≤0.8DC
		Aciers moxydables austerntiques	≥200HB	MP7030	ММ	100 (75–125)	0.15 (0.10-0.20)	≤5	<0.8DC
	М	Aciers inoxydables duplex	≤280HB	MP7030	ММ	80 (60–100)	0.10 (0.05-0.15)	≤5	<0.8DC
	IVI	Aciers inoxydables	≤200HB	MP7030	ММ	125 (100–150)	0.15 (0.10-0.20)	≤5	≤0.8DC
	ferritiques et martensitiques	ferritiques et martensitiques	≥200HB	MP7030	ММ	100 (75–125)	0.15 (0.10-0.20)	≤5	<0.8DC
		Acier inoxydable à durcissement structural	<450HB	MP7030	ММ	70 (50- 90)	0.10 (0.05-0.15)	≤5	≤0.8DC
				MP7030	ММ	40 (20- 50)	0.15 (0.10-0.20)	≼3	<0.6DC
		Alliage titane	_	MP9120	L	60 (50- 70)	0.10 (0.05-0.15)	≼3	<0.6DC
	S			MP9130	L	40 (20- 50)	0.15 (0.10-0.20)	≼3	<0.6DC
	5			MP7030	ММ	40 (20- 50)	0.15 (0.10-0.20)	≼3	<0.6DC
		Alliage réfractaire	_	MP9120	L	60 (50- 70)	0.10 (0.05-0.15)	≼3	<0.6DC
				MP9130	L	40 (20- 50)	0.15 (0.10-0.20)	≼3	<0.6DC
I									1/1

La coupe lubrifiée est recommandée pour obtenir un bon état de surface dans l'acier inoxydable. (La durée de vie sera plus courte par rapport à l'usinage à sec.)

L'utilisation de l'arrosage interne est recommandée pour les alliages de titane et réfractaires.

En cas de faible raideur de machine ou de bridage ou de grands porte-à-faux, veuillez réduire les vitesses de coupe et d'avance de 30 %.

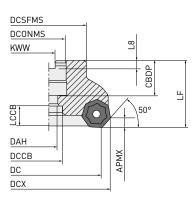
CONDITION DE COUPE AVEC PLAQUETTE DE PLANAGE

Matière	Propriétés	Plaquette de coupe	~	Plaquette de planage	~	Vc	fz	ар	ae
Acier doux	≤180HB	VP15TF	MP	VP15TF	WP	250 (200–300)	0.30 (0.20-0.40)	≤0.5	<0.8DC
Acier doux	\$10U∏D	MP6120	М	MP6120	М	250 (200–300)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	100 200110	VP15TF	MP	VP15TF	WP	220 (170–270)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
Acier au carbone/ faiblement allié	180-280HB	MP6120	М	MP6120	М	220 (170–270)	0.30 (0.20-0.40)	≤0.5	<0.8DC
	200 250110	VP15TF	MP	VP15TF	WP	140 (100–180)	0.30 (0.20-0.40)	≤0.5	<0.8DC
	280-350HB	MP6120	М	MP6120	М	140 (100–180)	0.30 (0.20-0.40)	≤0.5	<0.8DC
Fretz gripo	-2FOMD-	MC5020	MK, HK	MC5020	WK	320 (250–400)	0.30 (0.20-0.40)	≤0.5	<0.8DC
Fonte grise	≤350MPa	VP15TF	MP	VP15TF	WP	220 (150–300)	0.30 (0.20-0.40)	≤0.5	<0.8DC
	-/F0MD-	MC5020	MK, HK	MC5020	WK	250 (200–300)	0.20 (0.10-0.30)	≤0.5	<0.8DC
F Lat dilland	≤450MPa	VP15TF	MP	VP15TF	WP	200 (150–250)	0.20 (0.10-0.30)	≤0.5	<0.8DC
Fonte ductile	.000MD	MC5020	MK, HK	MC5020	WK	220 (200–250)	0.20 (0.10-0.30)	≤0.5	<0.8DC
	≤800MPa	VP15TF	MP	VP15TF	WP	170 (150–200)	0.20 (0.10-0.30)	≤0.5	<0.8DC
Alliage réfractaire	_	VP15TF	MP	VP15TF	WP	40 (20- 50)	0.15 (0.10-0.20)	≤0.5	<0.8DC
Acier trempé	40-55HRC	VP15TF	MP	VP15TF	WP	80 (60–100)	0.15 (0.10-0.20)	≤0.5	<0.8DC

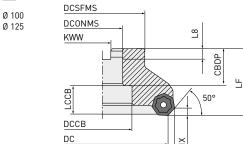
En cas de faible raideur de machine ou de bridage ou de grands porte-à-faux, veuillez réduire les vitesses de coupe et d'avance de 30 %.

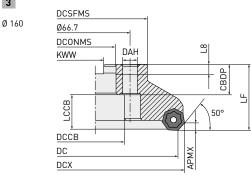
Veuillez utiliser une plaquette de géométrie WP en combinaison avec des plaquettes de géométrie M ou MP, et une plaquette de géométrie WK en combinaison avec des plaquettes de géométrie MK ou HK.

AHX640W

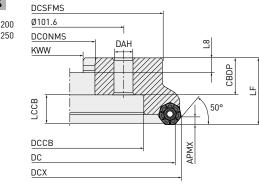


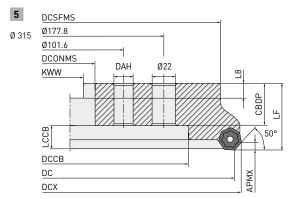
SURFAÇAGE POUR L'USINAGE À HAUT DÉBIT DES FONTES




1 Ø 80

2




3

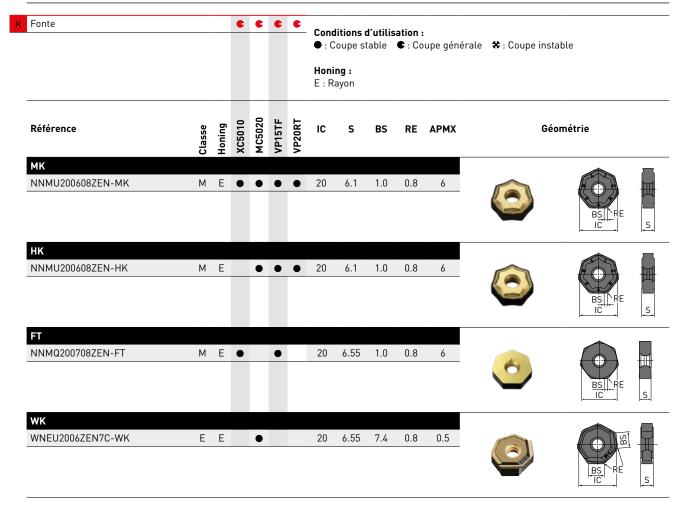
Ø 200

4

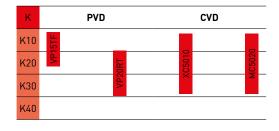
Outil à droite uniquement.

AHX640W - SURFAÇAGE POUR L'USINAGE DES FONTES À HAUT DÉBIT

ATTACHEMENT PAR ALÉSAGE


	Stock								
Référence	R	L	— APMX	DC	DCONMS	LF	WT	ZEFF	Туре
AHX640W-080A08R/L	•	•	6	80	27	50	1.5	8	1
AHX640W-080A10R/L	•	•	6	80	27	50	1.5	10	1
AHX640W-100B10R/L	•	•	6	100	32	50	2.1	10	2
AHX640W-100B14R/L	•	•	6	100	32	50	2.1	14	2
AHX640W-125B12R/L	•	•	6	125	40	63	3.1	12	2
AHX640W-125B18R/L	•	•	6	125	40	63	3.1	18	2
AHX640W-160C16R/L	•	•	6	160	40	63	5.6	16	3
AHX640W-160C22R/L	•	•	6	160	40	63	5.6	22	3
AHX640W-200C20R/L	•	•	6	200	60	63	8.0	20	4
AHX640W-200C28R/L	•	•	6	200	60	63	8.0	28	4
AHX640W-250C24R/L	•	•	6	250	60	63	12.6	24	4
AHX640W-250C36R/L	•	•	6	250	60	63	12.6	36	4
AHX640W-315C28R/L	•	•	6	315	60	80	31.5	28	5
AHX640W-315C44R/L	•	•	6	315	60	80	31.5	44	5

DIMENSIONS DE MONTAGE


-/-/									_
Référence	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
AHX640W-080A08R/L	23	13	_	27	56	92.6	12.4	7	1
AHX640W-080A10R/L	23	13	_	27	56	92.6	12.4	7	1
AHX640W-100B10R/L	32	_	45	32	70	112.6	14.4	8	2
AHX640W-100B14R/L	32	_	45	32	70	112.6	14.4	8	2
AHX640W-125B12R/L	32	_	56	40	80	137.6	16.4	9	2
AHX640W-125B18R/L	32	_	56	40	80	137.6	16.4	9	2
AHX640W-160C16R/L	29	_	56	40	100	172.6	16.4	9	3
AHX640W-160C22R/L	29	_	56	40	100	172.6	16.4	9	3
AHX640W-200C20R/L	32	_	135	60	155	212.6	25.7	14	4
AHX640W-200C28R/L	32	_	135	60	155	212.6	25.7	14	4
AHX640W-250C24R/L	32	_	180	60	200	262.6	25.7	14	4
AHX640W-250C36R/L	32	_	180	60	200	262.6	25.7	14	4
AHX640W-315C28R/L	57	_	225	60	285	327.6	25.7	14	5
AHX640W-315C44R/L	57	_	225	60	285	327.6	25.7	14	5

AHX640W - PLAQUETTES

Les plaquettes peuvent être utilisées avec des fraises à droite ou à gauche.

CLASSIFICATION DES NUANCES

● : Article stocké. ★ : Article stocké au Japon.

AHX640W

CONDITIONS DE COUPE RECOMMANDÉES

COUPE GÉNÉRALE

	Matière	Propriétés	Conditions	Nuance		Vc	fz	ар	ae
			C	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	≤0.8DC
	Fonte grise	<350MPa	¢	MC5020	MK, HK	220 (150- 300)	0.3 (0.2-0.4)	≤5	≤0.8DC
			e *	VP15TF/VP20RT	MK, HK	180 (130- 230)	0.3 (0.2-0.4)	≤5	<0.8DC
			C	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	<0.8DC
K		<450MPa	•	MC5020	MK, HK	200 (150- 250)	0.2 (0.1-0.3)	≤ 5	<0.8DC
	Fonte ductile		e *	VP15TF/VP20RT	MK, HK	170 (120- 220)	0.2 (0.1-0.3)	≤5	<0.8DC
	Fortie ductite		C	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	<0.8DC
		<800MPa	•	MC5020	MK, HK	170 (150- 200)	0.2 (0.1-0.3)	≤5	<0.8DC
			e *	VP15TF/VP20RT	MK, HK	140 (100- 180)	0.2 (0.1-0.3)	≤5	<0.8DC
									1/1

Veuillez utiliser des conditions de coupe selon le tableau ci-dessus. La durée de vie en coupe lubrifiée est pus courte qu'en usinage à sec.

FINITION (UTILISATION DES PLAQUETTES DE PLANAGE)

Matière	Propriétés	Conditions	Nuance	~	Vc	fz	ар
Fonte grise	<350MPa	C	MC5020	MK, HK	320 (250–400)	0.2 (0.1-0.3)	<0.5
ronte grise	<2200MPd	•	MC5020	MK, HK	270 (200–350)	0.2 (0.1-0.3)	0.5-3
Fonte ductile	/FOMD-	•	MC5020	MK, HK	270 (200–350)	0.2 (0.1–0.3)	<0.5
Fonte ductite	<450MPa	•	MC5020	MK, HK	220 (200–250)	0.2 (0.1–0.3)	0.5–3
							1/1

Veuillez utiliser 2 ou 3 plaquettes de planage lors d'une avance supérieure à 6 mm/tr.

MÉMO		

FILIALES DE VENTE EUROPÉENNES

GERMANY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

UK Office

MMC HARDMETAL UK LTD 1 Centurion Court, Centurion Way

Tamworth, B77 5PN Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

UK Deliveries / Returns

Unit 4 B5K Business Park, Quartz Close

Tamworth, B77 4GR

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711

Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone + 33 1 69 35 53 53 . Fax + 33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw Phone +48 71335 1620 . Fax +48 71335 1621
Email sales@mitsubishicarbide.com.nl

Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MITSUBISHI MATERIALS TOOLS EUROPE GMBH ALMANYA İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Fmail info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUÉ PAR:

г П

 L

B195F

Publié par : A MITSUBISHI MATERIALS TOOLS EUROPE | 2024.05